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Abstract. We present a theoretical analysis of the photonic band structure of fcc colloidal
crystals in relation to experimentally available transmission spectra of finite slabs of such crystals.

1. Introduction

Photonic crystals with lattice spacings comparable to the wavelength of light have interesting
properties and potentially many technological applications (see [1] for a recent review). Such
crystals, which exhibit absolute frequency gaps in the optical region of the electromagnetic
(EM) spectrum, are expected to have important applications in optoelectronics [2], but
these may not be the only photonic crystals with interesting properties and applications. It
has been shown, for example, that photonic crystals of appropriate structure may have an
optical activity (turning the plane of polarization of incident light) much greater than that
of naturally occurring optically active materials [3].

So far it has not been possible to fabricate a photonic crystal with an absolute frequency
gap in the optical regime, but one by-product of this effort has been the experimental study
of colloidal crystals with lattice spacings comparable to the wavelength of light [4, 5]. Under
suitable conditions, a suspension of negatively charged polystyrene microspheres in water,
interacting with a short-range repulsive Coulomb force and with a long-range attractive
Van der Waals force, self-organize into an fcc crystal with a lattice constant which can be
varied in a controlled manner at the preparation stage [6]. The photonic crystals obtained
in this manner are worth studying, although they do not exhibit an absolute frequency
gap because of the relatively low refractive index contrast between the microspheres and
the surrounding medium. The colloidal crystals studied by Tarhan and Watson [4] were
approximately 450µm thick, consisting of about 1700 layers of (111) planes of polystyrene
microspheres. The microspheres had a mean diameter of 0.135µm monodisperse to within
4.2%, and occupied 5% of the total volume of the crystal. These crystals grow with the
densest planes (111) parallel to the sample cell window, and in this way the [111] crystal
direction is knowna priori. The remaining information relating to the orientation of the
crystal was obtained via a Kossel line analysis [4].

Tarhan and Watson [4] obtained transmission spectra over a wide range of wavelengths
(475–800 nm) for light incident normally on the (111) surface of the above crystal, and for
light incident at an angle, for both orthogonal components of the incident plane-polarized
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beam. From these spectra they obtained approximate photon dispersion curves (frequency
ω versus wavevector) for the given crystal. We shall discuss their data after we have
introduced our theoretical results for the above quantities.

Figure 1. The reducedk-zone associated with the (111) surface of an fcc lattice. The conv-
entional first Brillouin zone is shown by broken lines.

2. Photon dispersion curves and transmission spectra of a colloidal crystal

We calculated the photon dispersion curves and the transmittance of the colloidal crystals
discussed in [4] using the method that we have described in [7]. In all of our calculations
concerning an infinite crystal, this is taken to be an fcc crystal with one polystyrene
microsphere per lattice site. Each microsphere has a radiusR = 67.5 nm, and a (relative)
dielectric constantεM = 2.59. The medium (water) surrounding the microspheres has a
dielectric constantεw = 1.80. The above values are exactly the same as those given in [4].
We have used for the lattice constant of the crystal the valuea = 465 nm. This is somewhat
smaller than the valuea = 469 nm which was deduced in [4] from Bragg’s law. We justify
this by noting that, whena = 465 nm, the observed minimum in the transmittance through
a slab of the material associated with Bragg reflection from the (111) planes (figure 3(a) of
[4]) is accurately reproduced by our calculation. We point out that our method of calculation
is exact and takes fully into account multiple scattering by the spheres. We note in passing
that one obtains the same value for the lattice constant (a = 465 nm) by substituting in
Bragg’s law the observed position of the minimum in the transmittance and, instead of the
dielectric constant of water which was used in [4], that (εeff ) of an effective medium given
by [8]

εeff − εw
εeff + 2εw

= β εM − εw
εM + 2εw

(1)

whereβ is the volume fraction occupied by the microspheres.
Our method provides us with the complex-frequency band structure of the infinite crystal

associated with a given crystallographic plane, and, in the present case, we have chosen this
to be the (111) plane of the given fcc lattice. For givenk‖, the component of the reduced
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wavevector parallel to the (111) surface which lies in the surface Brillouin zone (SBZ) of
the given surface (the outer hexagon formed by the solid lines in figure 1), we obtained the
real-frequency lines, in the form

kz = kz(ω;k‖). (2)

A frequency line (2) gives thez-component of the wavevector (normal to the (111)
surface) as a function of the frequencyω for given k‖, for the given line. The regions of
ω over whichkz is real define corresponding frequency bands, and regions over whichkz
is complex define corresponding frequency gaps (stop gaps). The corresponding solutions
of Maxwell’s equations (eigenfunctions of the EM field in the infinite crystal) are Bloch
waves: the electric field component of the EM field (a similar equation is obeyed by the
magnetic field) satisfies the equation

E(r +Rn) = eik·RnE(r) (3)

wherek = (k‖, kz(ω;k‖)). Whenkz is real we have a propagating solution, and whenkz
is complex we have an evanescent wave, which grows exponentially asz → +∞ or as
z → −∞. In the infinite crystal, only propagating waves have a real existence. Using
the periodicity of the band structure in thekz-direction, i.e.ω(kz + |b(3)|;k‖) = ω(kz;k‖),
where b(3) = (0, 0, 2π

√
3/a) is the primitive vector of the reciprocal lattice normal to

the (111) plane, we define the reducedk-zone appropriate to this surface as follows:
k = (k‖, kz), with k‖ in the SBZ and−|b(3)|/26 kz < |b(3)|/2. This is the hexagonal prism
formed by the solid lines in figure 1. In the same figure we also show the conventional
first Brillouin zone (BZ): the polyhedron formed by the broken lines. A propagating Bloch
wave in the infinite crystal corresponding to a reduced wavevector within the BZ is obtained
from one with a wavevector in the reducedk-zone associated with the (111) surface, in
the sense that ak-point in the one zone has its equivalent point in the other: the two
points differ by a vector of the three-dimensional reciprocal lattice if they do not coincide.
Therefore, having calculated the real-frequency lines (2), we could obtain the dispersion
curves along a symmetry line in the BZ to compare with the dispersion curves along
the same line presented in [4]. It is worth noting that, when there is a plane of mirror
symmetry parallel to the surface under consideration, as is the case with the (111) plane
of the present fcc crystal, then, if there exists, for givenω, a Bloch wave with a reduced
wavevectork = (k‖, kz(ω;k‖)), there also exists a Bloch wave with reduced wavevector
k = (k‖,−kz(ω;k‖)) and, evidently, if one of these waves propagates (decays) to the right
(in the positivez-direction) the other propagates (decays) to the left. The advantages to be
had from a knowledge of the complex-frequency band structure are discussed in [7].

In figure 2(a), we show a real-frequency line fork‖ = 0 (the centre of the SBZ of
the (111) surface), forω in the region of the lowest frequency gap, associated with Bragg
reflection from the (111) planes (in the figure we write, instead ofω, the corresponding
wavelength of the incident light). The sections below and above the gap correspond to
dispersion curves along the0L symmetry line of the BZ (figure 1). The real part ofkz
over the frequency gap is constant and equals|b(3)|/2, the value at the edge of the reduced
k-zone defined in figure 1. The broken line in figure 2(a) gives Imkz(ω) over the gap; it
essentially determines the attenuation of an EM wave in the infinite crystal and, therefore,
the transmission coefficient of light incident normally on a slab of the material parallel to
the (111) surface. We note that the bands shown in figure 2(a) are doubly degenerate, and
that they couple, respectively, to the two orthogonal components of plane-polarized light,
incident normally on the (111) surface.

The way to calculate the transmission coefficient is described in [7]. Using that method
we calculated the transmission coefficient for light incident normally on a slab of the material
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Figure 2. (a) The photonic complex band structure at the centre of the SBZ of a (111) surface of
the given fcc colloidal crystal in the region of the lowest frequency gap. The dispersion curves
are given over a limited region of the normalizedz-component of the wavevector, 2kz/|b(3)|,
near the edge of the reducedk-zone. (b) The corresponding transmittance curve of a slab of 211

layers parallel to the (111) surface. The solid (broken) line is obtained without (with) absorption
taken into account.

Figure 3. Schematic constructions of the reflection and transmission matrices for a colloidal
crystal including the effect of the air–water interfaces.

211 layers thick. The formulae given in [7] give the transmission and reflection matrices,
denoted byQ in that paper, for light incident on a multilayer of spheres, assuming that
the material surrounding the spheres in the crystal extends beyond the slab to infinity. In
the present case the material surrounding the spheres in the slab is water and that on either
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side of the slab is air with a dielectric constantεa = 1.0. Therefore light incident on either
of the water–air interfaces, from either side, will be partly reflected at that interface. The
way to take into account this scattering of the light at the interfaces is shown schematically
in figure 3. One can easily show that the matrix elementsQ̄ for the reflection and the
transmission of light incident on the slab from the left are given by

Q̄I = Twa(I− PII Rwa)
−1PI

Q̄III = PIII + PIV Rwa(I− PII Rwa)
−1PI

(4a)

where

PI = QI(I− RwaQIII )−1Taw

PII = QII +QIRwa(I−QIII Rwa)
−1QIV

PIII = Raw + TwaQIII (I− RwaQIII )−1Taw

PIV = Twa(I−QIII Rwa)
−1QIV .

(4b)

The reflection and transmission matrices for a flat interface between two different
homogeneous media A and B (air(a) and/or water(w) in our case) are given by

[RAB ]gi;g′i ′ = δgg′
[
Rx cos2 φ + Ry sin2 φ (Rx − Ry) sinφ cosφ 0
(Rx − Ry) sinφ cosφ Rx sin2 φ + Ry cos2 φ 0

0 0 Rz

]

[TAB ]gi;g′i ′ = δgg′
[
Tx cos2 φ + Ty sin2 φ (Tx − Ty) sinφ cosφ 0
(Tx − Ty) sinφ cosφ Tx sin2 φ + Ty cos2 φ 0

0 0 Tz

] (4c)

wherei, i ′ = x, y, z and

Rx = −
[

2

(
1+ εAk

B
z

εBkAz

)−1

− 1

]
Ry =

[
2

(
1+ k

B
z

kAz

)−1

− 1

]
Rz = −Rx

Tx = 2
εAk

B
z

εBkAz

(
1+ εAk

B
z

εBkAz

)−1

Ty = 2

(
1+ k

B
z

kAz

)−1

Tz = 2
εA

εB

(
1+ εAk

B
z

εBkAz

)−1

kAz =
√
ω2

c2
εA − (k‖ + g)2 kBz =

√
ω2

c2
εB − (k‖ + g)2.

(5)

In the above formulae the component of the wavevector parallel to the interface is written as
k‖ + g, wherek‖ is taken in the SBZ andg is the appropriate two-dimensional reciprocal-
lattice vector [7]. We denote the azimuthal angle ofk‖ + g with respect to the coordinate
system defined in figure 1 asφ. The incident and reflected waves are referred to an origin
which is the midpoint between the first plane of the slab and the would-be preceding plane
of the corresponding infinite crystal. The transmitted wave is referred to an origin at the
midpoint between the last plane of the slab and the would-be next plane of the corresponding
infinite crystal. The effect of the scattering at the interfaces on the transmittance is relatively
small, but not negligible; it compares with the difference in the transmittance of the cell
between the two incident polarizations.

All of the transmittance curves in the present work, unless otherwise stated, were
calculated for a slab 211 layers thick and with the scattering at the slab–air interfaces
taken into account. We have also taken into account the small degree of absorption of
light that does occur in the crystal by adding a small imaginary part ImεM = 0.01 to
the dielectric constant of the spheres. We can see that the transmittance shown in figure
2(b) is closely related to the corresponding real-frequency line shown in figure 2(a). In



10266 V Yannopapas et al

the absence of absorption, the transmittance is practically unity over the allowed frequency
bands, diminishing rapidly as the frequency moves from the edge to the centre of the
frequency gap. Moreover, in the absence of absorption, the finite size of the slab introduces
small oscillations in the transmittance at the band edges. When absorption is taken into
account, these oscillations disappear and the transmittance is reduced at all frequencies, but
not in a uniform manner: away from the resonance minimum the transmittance increases
with the wavelength in agreement with the experimental observations [4].

Figure 4. Transmittance curves for the given fcc colloidal crystal calculated for various angles
of incidence. The solid (broken) lines refer to s (p) polarization of the incident light. (a) The L
point, (b) L+ 16◦, (c) L+ 26◦, (d) L+ 36◦, (e) L+ 47◦, (f ) the W point(L + 58◦).

In figure 4 we present the results of our calculation for the transmittance of a slab
for different angles of incidence. These transmittance curves are to be compared with the
corresponding experimental curves (at the same angle of incidence) of Tarhan and Watson
(figure 3 of [4]). The solid lines are obtained for s-polarized incident light: this is called
vertical polarization in [4]; the electric field component of the incident light is parallel to
the surface of the slab and oscillates along they-direction (i.e. normal to LW). The dashed
lines are obtained for p-polarized incident light: this is called horizontal polarization in
[4]; the electric field component of the incident light lies in the plane of incidence (the
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xz-plane). The agreement between theory and experiment is on the whole quite good. The
variation with angle of the higher-wavelength minimum in the transmittance (due basically
to a frequency gap generated by Bragg reflection from the (111) planes) is reproduced
very well by the calculation; the shape of the transmittance curve about this minimum, its
dependence on the polarization of the incident light, and the variation of these quantities
with angle are reproduced reasonably well but not exactly by our calculation. The second
minimum in the transmittance curve appearing when the angle of incidence equals 26◦,
which is associated with Bragg reflection from the (002) planes, is also reproduced by the
calculation (figure 4(c)), but its calculated shape, especially when the angle of incidence
is 47◦ (figure 4(e)), appears more complicated than its observed shape. We suspect that
this might be due to deviations from the perfect periodicity (all spheres have the same
radius and are arranged perfectly periodically in space) which we have assumed in the
calculation. Moreover, a third weak minimum, associated with Bragg reflection from the
(1̄11) planes, appears at a lower wavelength when the angle of incidence is 47◦ (figure
4(e)). We note that the dependence of the transmittance on the polarization of the incident
light exists at all angles (except at normal incidence (figure 4(a))) as in the experiment.
Finally, we note that a small minimum in the transmittance curves observed experimentally
atλ ∼= 475 nm, for angles of incidence 47◦ and 51.1◦, is not reproduced by the corresponding
calculations.

Figure 5. (a) The photonic band structure, fork‖ = (
√

2π/a, 0), in the region of the lowest
frequency gap. The dispersion curves are given over a limited region of the normalizedz-
component of the wavevector, 2kz/|b(3)|, near the edge of the reducedk-zone. The shaded region
representing the gap for the givenk‖ extends tokz = 0. (b) The corresponding transmittance
curve of a slab 211 layers thick parallel to the (111) surface, for light incident with the same
k‖. The solid (broken) line refers to s- (p-) polarized incident light.

We shall next discuss the possibility of obtaining from the transmission curves (such as
those of figure 4) the width of the frequency gap as a function ofk‖ which is determined,
of course, by the angle of incidence for a given frequency. We have already shown in
figure 2(a) the frequency bands, near the frequency gap, corresponding tok‖ = 0, which
determine the transmittance, shown in figure 2(b), for normal incidence on a (111) slab of
the crystal. In figure 5(a) we show the frequency bands in the vicinity of the frequency
gap (the dispersion curves are given forkz near the edge of the reducedk-zone), for
k‖ = (kx, ky) = (

√
2π/a, 0) which coincides with the projection of the W point on the
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Figure 6. Transmittance curves fork‖ = (
√

2π/a, 0). (a) For a slab 25 layers thick. (b) For a
slab 211 layers thick. The solid (broken) lines refer to s- (p-) polarized incident light.

SBZ of the (111) surface (see figure 1). For the abovek‖, the edge point coincides with
the W point of the conventional BZ. At the W point we have three doubly degenerate
eigenfrequencies (the corresponding eigenmodes have the W3 symmetry), and two non-
degenerate eigenfrequencies, the lower of which corresponds to an eigenmode of symmetry
W′2 with the higher one corresponding to an eigenmode of symmetry W1. Away from the W
point, the degeneracy is lifted and one obtains eight non-degenerate frequency bands. We
note that the frequency gap appears between two doubly degenerate bands (at the W point)
and that the partners in each band couple respectively to the two different polarizations of
the incident radiation. We therefore expect that the transmittance of light through a thick
slab of the crystal will be practically independent of the polarization, when the frequency
of the incident light lies within the gap and its direction of incidence is such that thek‖-
component of the wavevector coincides with the projection of the W point on the SBZ.
The above implies that the attenuation of the incident light is determined by the imaginary
component ofkz of the real-frequency lines associated with the above-mentioned degenerate
bands, and it will be true of course only for sufficiently thick slabs. This is demonstrated
in figure 6, which shows the transmittances of a 25-layers-thick slab and a 211-layers-thick
slab. We can see that the transmittances for the two different polarizations are practically
the same only for the thick slab, for which it is appropriate to use the eigenmodes of the
infinite crystal in analysing the data.

It is important to note that the frequency gap for givenk‖ is determinedby the projection
of the corresponding frequency lines (2) on the SBZ as shown in figure 5 for a particular
k‖, and not by the eigenfrequencies at the edge of the reducedk-zone. The shaded region
in figure 5, representing the gap fork‖ = (

√
2π/a, 0), extends tokz = 0. We could in the

same manner obtain the real-frequency lines for anyk‖ in the SBZ, and the corresponding
frequency gap if indeed one such existed for thatk‖. We have chosen instead, in order
to compare with the experimental results [4], to calculate the eigenfrequencies for everyk
on the LW line (see figure 1). Our results are shown by the solid lines in figure 7. It is
evident from this figure that the calculated eigenfrequencies converge at the point W, which
implies, of course, that no absolute frequency gap exists.

A transmission experiment can, at best, determine the eigenfrequencies which define,
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Figure 7. The photonic band structure along the LW line. The solid lines are calculated
dispersion curves. The circles (corresponding to p-polarized incident light) and the triangles
(corresponding to s-polarized incident light) have been obtained from experimental transmission
data [4].

respectively, the upper and lower edges of a frequency gap and not all eigenfrequencies at
a givenk‖. Tarhan and Watson [4] identify the lower and upper limits of a frequency gap
for a given angle of incidence and not for a givenk‖. They identify these limits with those
frequencies below and above the minimum of the normalized transmittance, respectively,
where this transmittance equals 10−2, for the given angle of incidence. However, the
calculated transmittance curves show that as the imaginary component ofkz increases quite
slowly away from the edge of the forbidden band, there is a large amount of arbitrariness
in the positions of the band edges determined in this manner, dependent on the choice
of transmission factor picked as representing the band edge. We note, moreover, that the
k‖-component of the lower limit of the gap defined in the manner of Tarhan and Watson
[4] is not the same as thek‖-component of the upper limit. The above authors wrongly
identify the limits of the gaps defined in this manner with the eigenfrequencies on the
LW line. It is also worth noting that away from the L and W points, a band does not
couple exclusively with s- or p-polarized light but to a varying degree with either of them.
In order to clarify the above we show in figure 7 the limits of the ‘gaps’ (circles and
triangles) corresponding to the two transmission minima of figure 3 of [4], but as a function
of k‖, rather than the angle of incidence. We can see that in general these limits do not
correspond to the eigenfrequencies fork along the LW line, as expected from our arguments
above.

3. Conclusion

We may conclude that for a proper analysis of the experimental data, one has to calculate
the transmittance for a given slab of the colloidal crystal and compare directly with the
corresponding data, and if these agree, one can with confidence accept the theoretical
dispersion curves which underlie the calculation of the transmission spectra. But an estimate
of these dispersion curves directly from the experimental data in the manner of Tarhan and
Watson [4] is limited in its scope by the factors discussed in the previous section.
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